

課題番号 : 29指1029

研究課題名 : プロトンポンプ阻害剤のリスク因子としての可能性～代謝疾患と腸内環境への影響～

主任研究者名 : 河村 由紀

分担研究者名 : 一

キーワード : プロトンポンプ阻害剤、肥満、糖尿病、逆流性食道炎、食道胃接合部癌

研究成果 :

胃癌による死者数は年々減少しているが、その原因として最たる危険因子であるヘリコバクター・ピロリ感染の検査並びに除菌が積極的に進められてきたことが挙げられる。一方で、ピロリ菌感染率の低い西欧ではピロリ菌陰性の胃体部癌や、食道-胃接合部癌および食道腺癌の罹患率が高い。肥満者では腹圧の上昇や下部食道括約筋の機能低下のため、噴門部や食道-胃接合部で解剖学的に逆流が起こりやすく、肥満や腹囲は上述の癌発症と正の相関があることが報告されている。このような状況下でプロトンポンプ阻害剤の使用は拡大しており、炎症性腸疾患、過敏性腸症候群等の消化管疾患有する症例に対してもプロトンポンプ阻害剤服用は行なわれている。しかしながら、近年ではプロトンポンプ阻害剤投与により *Klebsiella* 等の口腔内細菌が大腸で増加するとの報告があり、腸内細菌叢の変化が疾患の発症・遷延化に影響する症例に対するプロトンポンプ阻害剤投与に警鐘がなされている。我々は前回の国際医療研究開発費 26 指 110 研究において、肥満に伴う上部消化管前癌病変のマウスモデルの作製に成功した。肥満症例におけるプロトンポンプ阻害剤投与を想定し、上記マウスモデルにおける高ガストリン血症の影響を評価する目的でプロトンポンプ阻害剤投与を行なった結果、高用量プロトンポンプ阻害剤投与は前癌病変の発生を促進した。西欧では、逆流性食道炎に伴って食道下部粘膜が扁平上皮から円柱上皮に置換されるバレット食道が、腺癌および接合部腺癌の発生母地であるとされており、本邦においても将来バレット腺癌の増加が懸念されている。従って、逆流性食道炎症例に対するプロトンポンプ阻害剤投与のリスク評価は喫緊の課題である。本研究では、プロトンポンプ阻害剤の消化管粘膜に及ぼす影響を分子レベルで明らかにするとともに、プロトンポンプ阻害剤投与のリスクを評価することを目的とした。

プロトンポンプ阻害剤のリスクを評価するために、まずはマウスモデルを用いた検討を行った。C57BL/6J マウスに高脂肪食を 8~20 週摂食させた肥満モデルでは、20~30% の頻度で粘液産生細胞の胃粘膜における配置異常、すなわち壁細胞が消失し、殆どが異所性粘液を産生する SPEM (Spasmolytic polypeptide expressing metaplasia) という胃癌の前癌病変である metaplasia cells への置換が認められる。通常食 CE-2 を摂食させた C57BL/6J マウスに 1、5、10 mg/kg の プロトンポンプ阻害剤 (タケプロン) を週 3 回投与し、消化管粘膜に及ぼす影響を検討した。プロトンポンプ阻害剤投与 4 週間後の消化管組織を観察したところ、高脂肪食摂取マウスの胃で認められた形態的に明らかな変化が、プロトンポンプ阻害剤を単独投与した場合にも認められた。胃における形態的異常は、10 mg/kg 投与群で 50%、5 mg/kg 投与群で 28.6% の頻度で認められた。ヒトにおける投与量に相当する 1 mg/kg 投与群では明らかな形態的な変化は認められなかった。プロトンポンプ阻害剤投与の早期に見られる影響を検討する目的で、プロトンポンプ阻害剤投与 1、2 週間目のマウス胃粘膜を 2% グルタルアルデヒド固定し、オ

スミウム染色後に電顕観察を行った。検討の結果、肥満マウスモデルで見られたミトコンドリアストレス等の所見（クリステの変化や玉ねぎ様構造）は、10mg/kg 投与群においても見出されなかった。

次に、先行研究 26 指 110 で収集した、肥満 BMI=30 超・糖尿病合併例を含む、胃癌切除例 20 症例について解析を行った。正常胃体部後壁の粘膜を 2% グルタールアルデヒド固定し、オスミウム染色後に電顕観察を行った。肥満マウスモデルで見られた、壁細胞におけるミトコンドリアの構造異常（クリステの変化や玉ねぎ様構造）は、非肥満症例を含むほぼ全例（95%、19/20）で見られ、肥満・糖尿病合併との関連は認められなかった。また、*Helicobacter Pylori* 感染との関連も認められなかった。これらの症例のプロトンポンプ阻害剤投薬歴を調べたところ、全例でプロトンポンプ阻害剤が投薬されていたため、更に健常者 3 名の胃粘膜生検の電顕観察を行なった。全員にプロトンポンプ阻害剤投薬歴は無く、うち 1 名が *Helicobacter Pylori* 除菌者であったが、上述のミトコンドリアの形態異常は認められず、プロトンポンプ阻害剤投薬との関連が疑われた。この成果の一部は 2017 年 7 月に開催された日本消化器外科学会（河村由紀、土肥多恵子、ほか）にて報告を行った。

さらにプロトンポンプ阻害剤が上皮細胞を直接傷害するか否かについて検討を進めた。実験には、我々が先行研究 26 指 110 研究で確立した、壁細胞を含む胃粘膜上皮細胞のオルガノイド培養系を用いた。マウス胃粘膜のコラゲナーゼ処理により酵素的に上皮細胞を分離し、マトリゲル包埋により三次元培養を行った。培養 40 時間後に形成されるオルガノイドに、1、10、100 ng/ml、1、10 μ g/ml のプロトンポンプ阻害剤を添加して、更に 1 時間培養した。細胞のバイアビリティーは培養液にエチジウムホモダイマーを添加することで死細胞を染色した。壁細胞は、オルガノイドをパラホルムアルデヒド固定後に、抗 H/K-ATPase 抗体することで同定した。最終的に、H/K-ATPase 陽性の壁細胞の核にあるエチジウムホモダイマーの蛍光強度を測定することで、オルガノイド内の壁細胞に対するプロトンポンプ阻害剤の傷害性を評価した。その結果、胃壁細胞に対するプロトンポンプ阻害剤の細胞傷害性が 100 ng/ml – 10 μ g/ml の範囲で濃度依存的に認められた。プロトンポンプ阻害剤により細胞障害に至るメカニズムを明らかにするため、オルガノイドを 10 μ g/ml のプロトンポンプ阻害剤で 1 時間処理した後、CellROX Green を用いて生細胞における活性酸素種 (reactive oxygen species: ROS) 産生を検出した。プロトンポンプ阻害剤処理群、対照生食処理群のどちらにおいても蛍光強度の増強は殆ど認められなかった。また両群間に差も見られなかったことから、オルガノイド培養条件下ではプロトンポンプ阻害剤はミトコンドリアでの ROS 産生を伴わずに、壁細胞に細胞死を誘導している可能性が高いと考えられた。

食生活の欧米化による肥満の増加や加齢、ピロリ菌の除菌に伴い逆流性食道炎が急増しており、その結果、プロトンポンプ阻害剤の使用が拡大している。肥満は癌発症のリスク因子であるが、プロトンポンプ阻害剤による胃酸分泌抑制も高ガストリン血症を引き起こし、胃がん発生のリスクを高めると懸念されている。本研究により我々は、先行研究で開発したオルガノイド培養技術を用いて、プロトンポンプ阻害剤が胃上皮細胞を直接傷害すること、またそのメカニズムとして ROS 産生を伴わない細胞死誘導過程であることを *in vitro* 系で明確に示した。これらの結果は今後のプロトンポンプ阻害剤の投薬量および適応について再考を促すものであり、現在、これらの研究成果をまとめて論文報告す

るための準備を進めている。

Subject No. : 29-1029

Title : Proton pump inhibitors as potential risk factor for gastrointestinal diseases ~ the effects on metabolic diseases and luminal environment ~

Researchers : Yuki I. Kawamura

Key word : Proton pump inhibitors, obesity, diabetes, reflux esophagitis, gastroesophageal junction adenocarcinoma

Abstract :

Helicobacter pylori has been known as a major risk factor linked to gastric cancer. The incidence of gastric cancer has steadily declined because the screening and eradication of *Helicobacter pylori* has become a common clinical practice to prevent gastric cancer. In contrast, the prevalence of gastric corpus cancer arising from is *Helicobacter pylori*-negative mucosa, gastroesophageal junction cancer, and esophageal adenocarcinoma has been increasing in Western countries, where the infection rate of *Helicobacter pylori* is relatively low. The recent striking increases in those types of cancers parallel the increase in obesity and metabolic syndromes, because obesity promotes gastroesophageal reflux, which may be related to increased intra-abdominal pressure and reflux disease. The use of proton pump inhibitors, which strongly inhibit the function of HK-ATPase in gastric parietal cells, has become widespread for the treatment of peptic ulcer disease and gastroesophageal reflux disease. Recently, proton pump inhibitors are also administrated for patients with inflammatory bowel disease and irritable bowel syndrome; however, such widespread use of proton pump inhibitors has been known to cause dysbiosis, such as striking increase of oral bacteria *Klebsiella* in colon.

In a previous study, we examined the gastrointestinal tract of mice with high fat diet-induced obesity and found that totally 35% of mice developed macroscopically distinct metaplastic patchy lesions in stomach during ~8-20 weeks of high fat diet feeding. This metaplastic patchy lesion was histologically characterized by severe loss of parietal cells expressing HK-ATPase and the expression of TFF2 and ectopic Alcian blue-positive mucin, which resembled the previously reported pattern for precancerous lesion, spasmolytic polypeptide expressing metaplasia (SPEM).

To examine the effect of proton pump inhibitors on upper gastrointestinal tract, proton pump inhibitors was administrated by oral-gastric gavage to mice fed with normal diet (CE2) three times a week. After 4 weeks of proton pump inhibitors administration, metaplastic lesion was induced in stomach of 50% and 28.6% of mice administrated with 10 mg/kg and 5 mg/kg of proton pump inhibitors, respectively, which resembled the precancerous lesion observed in high fat diet-fed mice and histologically characterized by severe loss of parietal cells expressing HK-ATPase and the expression of TFF2 and ectopic Alcian blue-positive mucin. No mice administrated with 1 mg/kg of proton pump inhibitors developed macroscopically distinct metaplastic patchy lesions in stomach.

To characterise the early changes in the stomachs of the mice after ~1-2 weeks of proton pump inhibitors administration, we performed morphological analysis using electron microscopy (EM). Samples of corpus mucosa were pre-fixed with 2% paraformaldehyde and 2% glutaraldehyde in 30 mM HEPES buffer (pH 7.4) at 4°C and then post-fixed with an aldehyde-OsO₄ mixture containing 1.25% glutaraldehyde, 1% paraformaldehyde, 0.32% K₃[Fe(CN)₆], and 1% OsO₄ in 30 mM HEPES buffer (pH 7.4) for 1 h at room temperature. The fixed blocks were sectioned to 70 nm thickness with an ultramicrotome. The ultra-thin sections were contrasted with EM stainer and lead acetate and examined with electron microscope. In high fat

diet-fed mice, parietal cells containing cytoplasmic tubulovesicles and numerous mitochondria were mostly lost in the gastric corpus pits and remaining parietal cells contained abnormal mitochondria with dense crystalline inclusions, suggesting the presence of mitochondrial stress in high fat diet-fed parietal cells. In contrast, proton pump inhibitors-administrated mice displayed no pathological changes even in the corpus mucosa of mice administrated with 10 mg/kg of proton pump inhibitors.

Next, we examined surgically resected human non-cancerous mucosa from patients with gastric adenocarcinoma using electron microscopy. The background mucosa of posterior wall of stomach were pre-fixed with 2% paraformaldehyde and 2% glutaraldehyde in 30 mM HEPES buffer (pH 7.4) at 4°C and then post-fixed with an aldehyde-OsO₄ mixture containing 1.25% glutaraldehyde, 1% paraformaldehyde, 0.32% K₃[Fe(CN)₆], and 1% OsO₄ in 30 mM HEPES buffer (pH 7.4) for 1 h at room temperature. The fixed blocks were sectioned to 70 nm thickness with an ultramicrotome and the ultra-thin sections were examined with electron microscope. Nineteen of twenty samples examined contained parietal cells with abnormal mitochondria with dense crystalline inclusions. These mitochondrial stress in parietal cells were observed in corpus mucosa from obese (> BMI 30) and non-obese patients with and without diabetes. There was no relationship between the mitochondrial stress and *Helicobacter pylori* infection. Since all of them were administrated with proton pump inhibitors, we further examined normal corpus mucosa from 3 healthy volunteers who have never medicated with proton pump inhibitors. Although one out of three had medicated to eradicate *Helicobacter pylori* infection, their gastric corpus pits were mostly occupied by parietal cells containing cytoplasmic tubulovesicles and numerous mitochondria and did not show any mitochondrial stress in parietal cells.

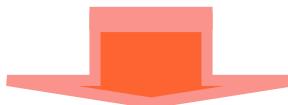
To test whether proton pump inhibitors affected cell viability *in vitro*, we isolated epithelial cells from the gastric corpus mucosa by flow cytometry and cultured them to form gastric-organoid for 44 h. Then, proton pump inhibitors were added to the gastric-organoid culture at the final concentration of 1, 10, 100, 1000, and 10000 ng/ml. After 1 h incubation, cell viability was determined by the addition of Ethidium Homodimer III to the three-dimensional organoid culture. To identify parietal cells, immunostaining of organoid culture for HK-ATPase was performed after fixing the cells with paraformaldehyde. The addition of proton pump inhibitors to the culture medium induced parietal cell death in a dose-dependent manner (100 ng/ml – 10 µg/ml). To clarify the mechanism of proton pump inhibitor-induced parietal cell death, we treated gastric-organoid culture with proton pump inhibitor at the final concentration of 10 µg/ml, and then detected the production of reactive oxygen species by using CellROX Green. In this organoid culture condition, the production of reactive oxygen species was hardly detected neither in proton pump inhibitor-treated nor untreated cells. These results suggest that proton pump inhibitor may induce parietal cell death without the production of reactive oxygen species.

The use of proton pump inhibitors has become widespread following an increase in gastroesophageal reflux due to the worldwide obesity epidemic, aging, eradication of *Helicobacter pylori*. Such widespread use of PPIs has recently come to be suggested to be associated with the formation of gastric sporadic fundic gland polyps. In this study, we observed mitochondrial stress in parietal cells of murine gastric mucosa after proton pump inhibitor administration. Furthermore, we clearly showed that proton pump inhibitor caused parietal cell death without the production of reactive oxygen species by using the gastric-organoid culture. These

results indicate that the use of proton pump inhibitors might be associated with an increased risk of metaplastic change in stomach.

29指1029：プロトンポンプ阻害剤のリスク因子としての可能性 ～代謝疾患と腸内環境への影響～

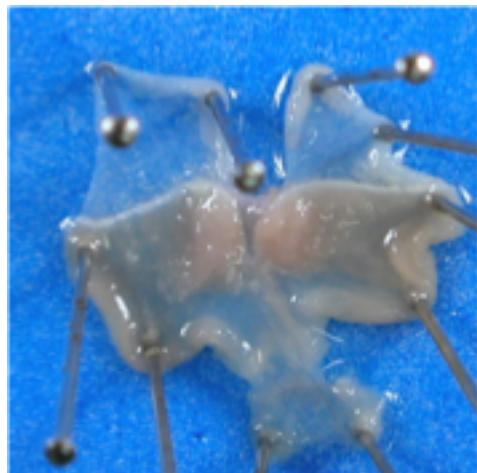
(主任研究者：研究所 消化器疾患研究部 河村 由紀)


研究課題

消化管粘膜におけるPPIリスク評価

研究計画

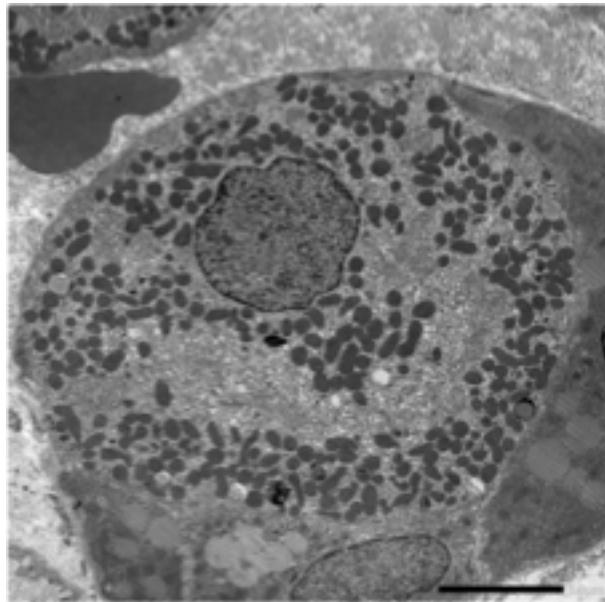
- ❖ マウスモデルを用いてPPI投与の影響を検討
- ❖ 上皮培養系を用いたメカニズム解析
- ❖ ヒト検体を用いた検証～PPI投与歴との関連～

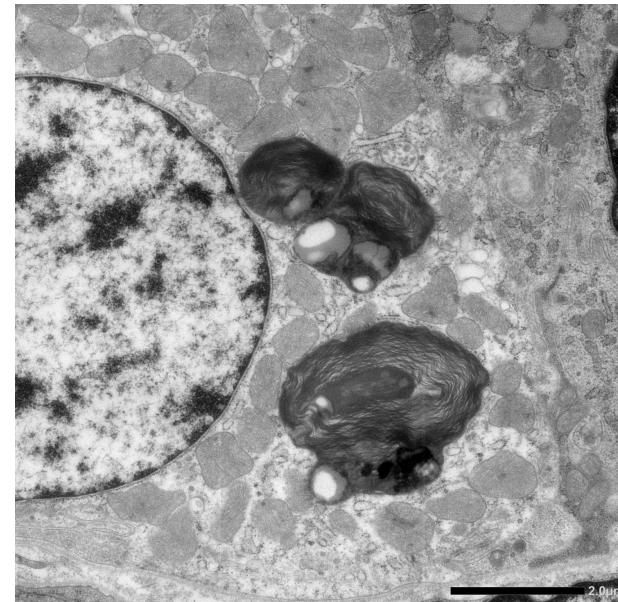


研究成果

- ❖ 通常食摂取マウスへの高濃度PPI単独投与により胃粘膜形態変化が引き起こされることを示した
- ❖ オルガノイド培養系を用いて、PPIはミトコンドリアでのROS産生を伴わずに壁細胞に細胞死を誘導することを見出した
- ❖ ヒト胃粘膜の電顕観察によりミトコンドリア構造異常を見出した

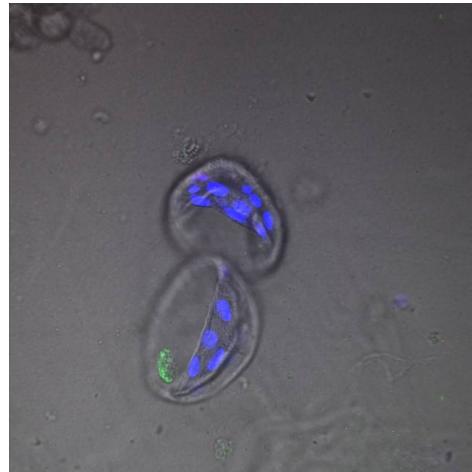
プロトンポンプ阻害剤の消化管に及ぼす影響 ～マウスモデルを用いた検討～


プロトンポンプ阻害剤により
通常食摂餌マウスに誘導される胃粘膜の変化

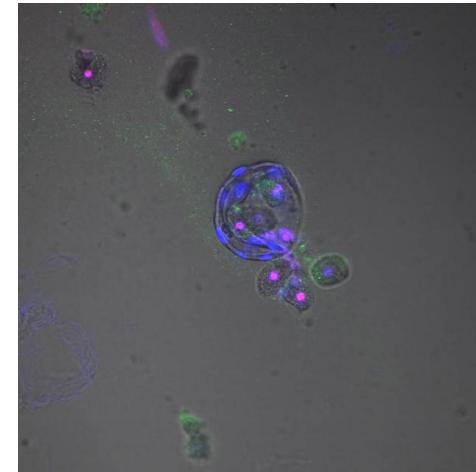

投与濃度	胃病変出現頻度
10 mg/kg	50%
5 mg/kg	28.6%
1 mg/kg	0%

プロトンポンプ阻害剤の消化管に及ぼす影響 ～ヒト検体を用いた検討～

正常ヒト胃壁細胞
プロトンポンプ阻害剤 (-)



肥満症例で見られた
ミトコンドリアストレス



プロトンポンプ阻害剤による細胞傷害 ～胃上皮培養系を用いた検討～

対照未処理
オルガノイド

プロトン阻害剤処理
オルガノイド

壁細胞における細胞死が
濃度依存的に認められた

研究発表及び特許取得報告について

課題番号 : 29指1029

研究課題名 : プロトンポンプ阻害剤のリスク因子としての可能性～代謝疾患と腸内環境への影響～

主任研究者名 : 河村由紀

論文発表

論文タイトル	著者	掲載誌	掲載号	年
Intermittent fasting prompted recovery from dextran sulfate sodium-induced colitis in mice	Okada, T., Otsubo, T., Hagiwara, T., Inazuka, F., Kobayashi, E., Fukuda, S., Inoue, T., Higuchi, K., Kawamura, Y. I., Dohi, T.	J Clin Biochemistry and Nutrition	61	2017
Disruption of the TWEAK/Fn14 pathway prevents 5-fluorouracil-induced diarrhea in mice	Sezaki T, Hirata Y, Hagiwara T, Kawamura YI, Okamura T, Takanashi R, Nakano K, Tamura-Nakano M, Burkly LC, Dohi T.	World J Gastroenterology	23	2017
DNA hypermethylation and silencing of PITX1 correlated with advanced stage and poor postoperative prognosis of esophageal squamous cell carcinoma	Otsubo T, Yamada K, Hagiwara T, Oshima K, Iida K, Nishikata K, Toyota T, Igari T, Nohara K, Yamashita S, Hattori M, Dohi T, Kawamura YI.	Oncotarget	8	2017
Fatty acids in high-fat diet potentially induce gastric parietal-cell damage and metaplastia in mice	Hirata Y, Sezaki T, Tamura-Nakano M, Oyama C, Hagiwara T, Ishikawa T, Sezaki T, Fukuda S, Yamada K, Higuchi K, Dohi T, Kawamura YI.	J Gastroenterology	52	2017

学会発表

タイトル	発表者	学会名	場所	年月
Fatty acids in a high-fat diet potentially induce gastric parietal-cell damage and metaplastia in mice	Hirata Y, Fukuda S, Yamada K, Higuchi K, Kawamura YI, Dohi T	DDW2017	Chicago	2017年5月

研究発表及び特許取得報告について

肥満と胃粘膜における壁細胞変化についての検討	山田 和彦、河村由紀、横溝 悠里子、中野(田村)美和、野原 京子、相馬 大介、山下 智、横井千寿、猪狩 亨、土肥多恵子.	第72回日本消化器外科学会総会	金沢	2017年7月
消化管発がんと腸内細菌叢—管腔内環境がもたらす上皮細胞の変化	土肥 多恵子、河村 由紀.	第76回日本癌学会総会(シンポジウム指定演題)	横浜	2017年9月

その他発表(雑誌、テレビ、ラジオ等)

タイトル	発表者	発表先	場所	年月日
該当なし				

特許取得状況について ※出願申請中のものは()記載のこと。

発明名称	登録番号	特許権者(申請者) (共願は全記載)	登録日(申請日)	出願国
該当なし				

※該当がない項目の欄には「該当なし」と記載のこと。

※主任研究者が班全員分の内容を記載のこと。